Comparteix

Urban planification

Active Mobility

CONTEXT

© connel / Shutterstock.com

The type and density of intersections on the street network (not just for vehicular traffic) have a significant impact on how people travel: on foot, by bicycle, on public transport or using private vehicles. It has been proven that there is a correlation between active travel and the connectivity of the streets.

The density of intersections and a larger network of routes for pedestrians/cyclists and public transport are positively related to physical activity for both leisure and travel and negatively related to the use of private vehicles. Moreover, the more an environment is perceived to favour walkability, the greater the likelihood of people walking. Therefore, a road network with a significant degree of connectivity increases physical activity because it offers better opportunities to travel on foot or by bicycle and at the same time improves air quality because it reduces the use of and dependence on private vehicles.
 

Read more

The connectivity of the urban network is a leading urban development parameter for the prediction of body weight. The neighbourhoods with the highest connectivity and walkability rates present lower levels of obesity and overweight and also a lower incidence of type 2 diabetes. Similarly, a lower incidence of childhood obesity has been found in areas where schools can be easily accessed on foot.

Moreover, it should be taken into account that increasing connectivity also leads to more possibilities for social interaction and consequently better mental health.

Everyone should have access to dense, high-quality infrastructure for pedestrians and cyclists. The promotion and, to a certain extent, the preferential treatment of non-motorised transport constitute the base for a socially fair transport system that efficiently uses public resources and produces a high degree of ecological sustainability. The need to connect cities to the natural environment should also be met by a secondary network of paths and public spaces. In this sense, people’s active mobility would be intermunicipal and emanate from the city to the surrounding area.

Accordingly, one of the most important measures to take into account in the design of cities is the promotion of active transport, making trips on foot or by bicycle the best options, at least for short distances. They improve health and environmental quality, reducing levels of air pollution and noise pollution and the heat island effect, which is expected to get worse as a consequence of the temperature increases associated with climate change.

OBJECTIVE

  • Foster healthy mobility, prioritising active transport.

PROPOSALS AND RECOMMENDATIONS

  • Draft a sustainable urban mobility plan to implement a sustainable mobility strategy in the municipality.
  • Prioritise the connectivity of the urban centre, the connectivity of the urban centre to areas that have proven to be important to the development of the city, and connections to the exterior (green belt).
  • Plan a network that integrates routes to walk and cycle, connecting facilities, housing, workplaces and open spaces. These routes should be more direct and shorter (where possible) than routes for motor vehicles.
  • Coordination with supramunicipal urban, transport and mobility planning.

Connectivity of the urban layout:

  • Maintain the continuity of pavements.
  • In new developments, limit the size of blocks.
  • In developed areas with little permeability, foster paths through the buildings.
  • Avoid overhead and underground crossings for pedestrians.
  • On streets with a high density of pedestrians avoid crossings for vehicles halfway along the block.
  • Ensure there is a safe space for pedestrians at car park entrances and ramps in general.
  • Ensure access to the main facilities (public buildings, schools, sports centres, etc.).
  • Improve access to parks and natural areas, connecting these spaces to housing areas.
  • Create green corridors throughout the system of green and blue spaces, configure spaces that link these points and facilitate the interpenetration of green areas in the city, the urban periphery and the countryside. Connect large urban parks, walkways, hiking trails, and areas and routes with cultural, historical and environmental value.
  • Connect bus stops to railway stations.
  • Facilitate access on foot and by bicycle to bus stops and the main railway stations.
  • Improve spaces to walk in neighbourhoods, develop an integrated system of paths and walkways.
  • Design and promote specific routes for walking and cycling: accessible, with guides and maps, distance information, etc. Convert old roads that are no longer used into high-quality, green-friendly routes that foster walking and cycling.
  • Incorporate the criteria described above into the design of new streets.

Design of pedestrian routes:

  • Separate pedestrians from vehicles by means of urban furniture, trees, etc.
  • Provide benches, fountains and rest areas as support on long routes.
  • Exterior lighting along streets and pedestrian routes.
  • Incorporate trees and other visually attractive elements along the routes.
  • Ensure the pavements are wide enough for their use.
  • Pedestrian crossings at intersections and halfway along the block (where necessary).
  • Ensure there is a continuous network of paths made up of pavements and pedestrian routes, improving the connectivity of walkways.
  • Create pedestrian routes oriented to interesting elements and lookout points.
  • Streets and paths that are accessible for users with reduced mobility: width, turning circle, suitable crossing times, visible access ramps, etc.

Connectivity to the cycle path network:

  • Define a continuous basic cycle lane structure with connections to the rest of the network. Provide cycle paths close to housing, with a wide variety of nearby destinations, good connections between streets and routes, safe routes and safe spaces to park bicycles.
  • Provide links between the various means of transport (public transport with active transport).
  • Include signage on cycle lanes with information about different directions and estimated times to various destinations.

Design of cycle paths:

  • Use marks or signs to strengthen the separation between motorised zones and cyclist zones.
  • Where necessary, physically separate cycle lanes from the rest of the vehicles.
  • Widen the cycle lanes if their use exceeds their capacity.
  • Pay special attention to intersections to improve visibility between cyclists and cars.
  • Reduce conflicts between cyclists and the opening of vehicle doors. Expand bicycle parking facilities when necessary.
  • Strengthen internal green connections.
  • Manage the various types of personal mobility vehicles (PMVs) that have appeared in recent years, reduce conflict situations between them and cyclists and pedestrians, and adapt spaces for them.

Cycling infrastructure:

  • Provide spaces to park bicycles along and at the end of the routes.
  • At conflictive crossroads, use specific signals to separate cyclists from vehicles and pedestrians.
  • Assess the incorporation of specific programmes for the shared use of bicycles.

REFERENCE EXPERIENCES

Information only available in Catalan

 

 

  • Vitoria-Gasteiz. Instauració dels itineraris per a vianants (conjunt articulat de trams de vies i interseccions en els que el vianant rep una atenció especial i prioritària, de manera que hi pugui circular i estar-s’hi de manera còmode i segura). Han desenvolupat el projecte de Sendas Urbanas. Va més enllà dels carrers per a vianants. Té en compte tot l’itinerari que fa el vianant, i fa èmfasi en els punts conflictius, sobretot les interseccions. Actualment consta de 44 quilòmetres distribuïts en 10 rutes per tota la ciutat. En aquest sentit, s’està configurant una xarxa per a vianants que minimitza la coexistència del vianant amb el vehicle privat i que permet, al mateix temps, connectar a peu els principals punts d’interès de la ciutat.
  • Copenhague. Tenen com a objectiu millorar els temps de desplaçament comparatius entre bicis i cotxes (fent que el desplaçament en bicicleta sigui més efectiu que el que es faci en cotxe). Per això prioritzen les dreceres per les bicis (en forma, si cal, de túnels, ponts, i a les carreteres o en el creuament de les vies dels trens...). Estudien l’opció de fer que carrers de dos sentits per als cotxes passin a ser d’un únic sentit, i que l’espai alliberat per aquesta acció passi a ser per les bicicletes.
    Per tal d’augmentar la sensació de seguretat dels ciclistes, per fer possible que més gent puguin anar a la velocitat que desitgin, i per fer que l’ús de la bicicleta sigui més atractiu per aquells que encara no l’empren, volen donar més espai als ciclistes a les artèries principals, també durant les hores de més trànsit rodat. Per això fan més amples els carrils bici i creen noves rutes per descongestionar les rutes existents molt denses. L’ampliació de l’amplada dels carrils bici es fa amb la premissa d’aconseguir la conversation cycling. La intenció és que els usuaris de la bicicleta puguin conversar mentre es desplacin, sense estar pendents del timbre d’una altra bicicleta que els vols avançar. Per això proposen fer trams d’amplada de 3 línies de bicicletes per cada sentit (i 4 línies en total als trams bidireccionals). I que aquests trams arribin a suposar el 80% de la xarxa de bicicletes.
    Recomanen que els carrils bici siguin pensats de manera coherent, ben enllaçats i sense baules febles a la cadena. Tenen detectat que una única intersecció percebuda com a poc segura comporta que la gent gran no agafi la bicicleta o que els pares no permetin als seus fills que l’agafin per anar a l’escola.
    De cara el 2025 els carrers de la ciutat s’adaptaran a les característiques i modalitats de circulació en funció de l’hora del dia i el trànsit. Així, mitjançant un sistema de leds incorporats a l’asfalt, els diferents trams del carrer passaran a ser d’ús dels ciclistes, dels cotxes, dels vianants o del transport públic.
  • Bristol. La creació de rutes per a bicicletes segregades del trànsit motoritzat és l’element de seguretat que més suport rep entre la població de Bristol. I al mateix temps, Bristol vol completar la xarxa de bicicletes pel centre del municipi enfocada a l’AAA (Complete All Ages and Abilities Cycle Network). Una xarxa pensada per a totes les edats i condicions físiques.
  • Rotterdam. La ciutat disposa d’uns 600 quilòmetres de carril bici. El 2017 els desplaçaments en bici a la ciutat varen suposar el 20% del total. Per tal de continuar fent la ciutat més bike friendly han fet diverses accions –contemplades al Pla Priority for cycling 2016-2018: han adaptat molts dels semàfors de la ciutat a les bicicletes; han tret diferents obstacles per als ciclistes en més de 50 camins, han millorat algunes de les interseccions més perilloses pels ciclistes, en algunes rotondes hi han incorporat el carril bici segregat, han posat ‘predictors verds’ pels ciclistes (marcadors incorporats als semàfors que indiquen quan trigarà a posar-se verd, i quan temps ho estarà), i sensors de pluja (aquests sensors donen una major freqüència de pas als ciclistes quan està plovent o nevant) i calor (aquests sensors detecten quants ciclistes s’estan esperant en vermell a partir de mesurar la calor corporal. Així, si hi ha molts ciclistes esperant el semàfor augmenta també la freqüència de verd). A Rotterdam també han tingut cura del paviment dels carrils bici i han reparat i renovat els que ho necessitaven. Han augmentat el nombre de places d’aparcament per a bicis a l’Estació Central, i a diferents parts de la ciutat on s’ha detectat que en mancaven. Estan millorant la il·luminació dels carrils bici, i també estan fent-los més amples, i fent-ne més de doble direcció. També estan ampliant les zones d’espera per a les bicis als semàfors.

 

LEGISLATION

STUDIES AND TECHNICAL DOCUMENTATION

Technical documents:

Scientific papers:

  • Adachi-mejia, A. M. et al. (2017) ‘Geographic variation in the relationship between body mass index and the built environment Anna’, Preventive Medicine. Elsevier Inc. doi: 10.1016/j.ypmed.2017.03.018.
  • Adams, M. A. et al. (2015) ‘Patterns of Walkability, Transit, and Recreation Environment for Physical Activity’, Am J Prev, 49(6), pp. 878–887. doi: 10.1016/j.amepre.2015.05.024.Patterns.
  • Albercht, S. et al. (2015) ‘Change in waist circumference with longer time in the US among Hispanic and Chinese immigrants: the modifying role of the neighborhood built environment Sandra’, Ann Epidemiol., 25(10), pp. 767–772. doi: 10.1016/j.annepidem.2015.07.003.Change.
  • Burgoine, T. et al. (2015) ‘Associations between BMI and home , school and route environmental exposures estimated using GPS and GIS : do we see evidence of selective daily mobility bias in children ?’, pp. 1–12.
  • Carlson, J. A. et al. (2015) ‘Association between neighborhood walkability and GPS- measured walking, bicycling and vehicle time in adolescents Jordan’, Health & Place, 32, pp. 1–7. doi: 10.1016/j.healthplace.2014.12.008.Association.
  • Cerin, E. et al. (2017) ‘Do associations between objectively- assessed physical activity and neighbourhood environment attributes vary by time of the day and day of the week ? IPEN adult study’, pp. 1–16. doi: 10.1186/s12966-017-0493-z.
  • Chudyk, A. M. et al. (2017) ‘Neighborhood walkability , physical activity , and walking for transportation : A cross- sectional study of older adults living on low income’. BMC Geriatrics, pp. 1–14. doi: 10.1186/s12877-017-0469-5.
  • Creatore, M. I. et al. (2016) ‘Association of Neighborhood Walkability With Change in Overweight, Obesity, and Diabetes’, 315(20), pp. 2211–2220. doi: 10.1001/jama.2016.5898.
  • Duncan, D. T. et al. (2016) ‘Walk Score , Transportation Mode Choice , and Walking Among French Adults : A GPS , Accelerometer , and Mobility Survey Study’. doi: 10.3390/ijerph13060611.
  • Feng, J. (2016) ‘The Built Environment and Active Travel : Evidence from Nanjing , China’, pp. 1–14. doi: 10.3390/ijerph13030301.
  • Fleig, L. et al. (2016) ‘Environmental and Psychosocial Correlates of Objectively Measured Physical Activity Among Older Adults’, Health Psychology, 35(12), pp. 1364–1372.
  • Gao, M., Ahern, J. and Koshland, C. P. (2016) ‘Perceived built environment and health-related quality of life in four types of neighborhoods in Xi ’ an , China’, Health & Place. Elsevier, 39, pp. 110–115. doi: 10.1016/j.healthplace.2016.03.008.
  • Heesch, K. C., Giles-corti, B. and Turrell, G. (2015) ‘Cycling for transport and recreation : Associations with the socio-economic , natural and built environment’, Health & Place. Elsevier, 36, pp. 152–161. doi: 10.1016/j.healthplace.2015.10.004.
  • Hwang, L., Hurvitz, P. M. and Duncan, G. E. (2016) ‘Cross Sectional Association between Spatially Measured Walking Bouts and Neighborhood Walkability’, pp. 1–11. doi: 10.3390/ijerph13040412.
  • James, P., Hart, J. E. and Laden, F. (2015) ‘Exposures to Walkability and Particulate Air Pollution in a Nationwide Cohort of Women’, Environmental Research, 142, pp. 703–711. doi: 10.1016/j.envres.2015.09.005.Exposures.
  • Kelley, E. A. et al. (2016) ‘Neighborhood Walkability and Walking for Transport Among South Asians in the MASALA Study’, J Phys Act Health, 13(5), pp. 514–519. doi: 10.1123/jpah.2015-0266.Neighborhood.
  • Kerr, J. et al. (2016) ‘Perceived Neighborhood Environmental Attributes Associated with Walking and Cycling for Transport among Adult Residents of 17 Cities in 12 Countries : The IPEN Study’, Environmental Health Perspectives, 124(3), pp. 290–298.
  • Koohsari, M. J. et al. (2016) ‘Street network measures and adults’ walking for transport: Application of space syntax’, Health & Place, 38, pp. 89–95.
  • Kurka, J. et al. (2015) ‘Patterns of neighborhood environment attributes in relation to children ’ s physical activity’, Health & Place. Elsevier, 34, pp. 164–170. doi: 10.1016/j.healthplace.2015.05.006.
  • Liao, Y. et al. (2016) ‘Associations of Perceived and Objectively-Measured Neighborhood Environmental Attributes With Leisure-Time Sitting for Transport’, Journal of physical activity & health.
  • Mackenbach, J. D. et al. (2016) ‘Interactions of individual perceived barriers and neighbourhood destinations with obesity-related behaviours in Europe’, 17(February), pp. 68–80. doi: 10.1111/obr.12374.
  • Maisel, J. L. (2016) ‘Impact of Older Adults ’ Neighborhood Perceptions on Walking Behavior’, Journal of Aging and Physical activity, 24, pp. 247–255.
  • Mäki-opas, T. E. et al. (2016) ‘The contribution of travel-related urban zones , cycling and pedestrian networks and green space to commuting physical activity among adults – a cross-sectional population-based study using geographical information systems’, BMC Public Health. BMC Public Health. doi: 10.1186/s12889-016-3264-x.
  • Malambo, P. et al. (2017) ‘Association between perceived built environmental attributes and physical activity among adults in South Africa’, BMVCPublic Health. BMC Public Health, 17, p. 213. doi: 10.1186/s12889-017-4128-8.
  • Mccormack, G. R. et al. (2016) ‘Supportive neighbourhood built characteristics and dog-walking in Canadian adults’, Can J Public Health, 107(3), p. e250. doi: 10.17269/CJPH.107.5360.
  • Melis, G. et al. (2015) ‘The Effects of the Urban Built Environment on Mental Health : A Cohort Study in a Large Northern Italian City’, pp. 14898–14915. doi: 10.3390/ijerph121114898.
  • Mertens, L. et al. (2016) ‘Perceived environmental correlates of cycling for transport among adults in five regions of Europe’, Obesity reviews, 17, pp. 53–61. doi: 10.1111/obr.12379.
  • Mitchell, C. A., Clark, A. F. and Gilliland, J. A. (2016) ‘Built Environment Influences of Children ’ s Physical Activity : Examining Differences by Neighbourhood Size and Sex’. doi: 10.3390/ijerph13010130.
  • Oliver, M. et al. (2015) ‘Neighbourhood built environment associations with body size in adults : mediating effects of activity and sedentariness in a cross-sectional study of New Zealand adults’, BMC Public Health. BMC Public Health, 15, p. 956. doi: 10.1186/s12889-015-2292-2.
  • Paul, P., Carlson, S. A. and Fulton, J. E. (2017) ‘Walking and the Perception of Neighborhood Attributes Among U.S. Adults, 2012’, Journal of Physical Activity and Health, 14(1), pp. 36–44.
  • Rothman, L. et al. (2017) ‘School environments and social risk factors for child pedestrian-motor vehicle collisions : A case-control study’, Accident Analysis and Prevention. Elsevier Ltd, 98, pp. 252–258. doi: 10.1016/j.aap.2016.10.017.
  • Sallis, J. F. et al. (2016) ‘Physical activity in relation to urban environments in 14 cities worldwide: a cross-sectional study.’, Lancet (London, England). Elsevier, 387(10034), pp. 2207–17. doi: 10.1016/S0140-6736(15)01284-2.
  • Shaffer, K. et al. (no date) ‘The Relationship of Living Environment with Behavioral and Fitness Outcomes by Sex : an Exploratory Study in College-aged Students’, (15).
  • Winters, M. et al. (2015) ‘Older adults ’ outdoor walking and the built environment : does income matter ?’, BMC Public Health. BMC Public Health, pp. 1–8. doi: 10.1186/s12889-015-2224-1.
  • Xu, Y. and Wang, F. (2015) ‘Built Environment and Obesity by Urbanicity in the U.S Yanqing’, Health & Place, pp. 19–29. doi: 10.1016/j.healthplace.2015.03.010.Built.

More information about addressing the Public Health Service: entornurbasalut@diba.cat

Date of last update:
ds., 08 de maig 2021 20:33:27 +0000